

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 1 of 9

Adding third party software to the NTM

The NTM operating system is programmed in C and uses about 5 sectors of LPC1114 Flash memory. This leaves 2 sectors of

4K for the OEM own application program.

In the near future versions of the LPC11xx with larger flash memory will be applied, providing more space for the OEM own

application programs.

The LPC1114 houses 8KB of RAM. The memory space above 4K is available for third party software.
OEM application programs should start RAM at 0x10001000h.
Stack space in the lower 4kB is sufficient for standard applications.

Software structure

Top view

550 mil

RDY
ANL1

PROG
RST
TXD

RXD
5V

GND

MISO
SCK

MOSI
SSEL
SLOT

INT
SDA
SCL

100 mil

USB

connection

MCX connector

or

JJB antenna

Transceiver control

TR_service.mac
(Transceiver control)

Application software

 Transceiver utility routines
 Application data

Application.mac (App. control)

I2C, SPI, UART, pins

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 2 of 9

Adding third party software to the NTM

The NTM is a package switching device using IEEE 803.15.4 frames.
This standard defines a number of frame types, to be used in particular cases.

 Data frame:

Carry data from one device to another and the data is processed by an application the device is connected with.
The software in the NTM hands this over to the application program.

 Mac frame:

Carry information from device to another device meant for proper control of the devices.
There are two versions:
Version 1 is meant to control the transceiver (remote programming)
Version 2 is meant to control the application program

 Beacon frame:

Short frames meant for synchronisation between devices

 Acknowledge frame:

Short frame to report reception

 Besides that the NTM uses a separate data type for audio streaming

The NTM operating system is an event driven task scheduler. In the idle operation the device can be put to sleep. The
events are:

 Reception of a frame

 Interrupt by the system timer, awakes the NTM

 Interrupt on the Aux pin, awakes the NTM

 Interrupt by the I2C controller

 Interrupt by a digital input awakes the NTM

 Interrupt by UART, awakes the NTM

Be aware that, in case the NTM is asleep, an I2C transfer needs to be preceded by an interrupt on the Aux pin to awaken the
device.

To incorporate your own application in the NTM, four event handles must be provided and ad libitum, private command
routines to control your application, using the NTM parser, can be added.

A header file is available that contains all required declarations and sample lines.

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 3 of 9

Adding third party software to the NTM

Chart for OEM programming

must be provided by user

Access system variables
structure

App.init @ 0x6000h

Application command
routines

Application command
structure

App.data_receive I2C routines

Service.timer Transmit App.isp

Input event

UART routine

SPI routine

UART routines

App.mac_receive

SPI routines (master)

Transmit TR_commands &
Application commands

UART

Transmit I2C
Tr registers
App registers
Frame payload

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 4 of 9

Adding third party software to the NTM

Using system variables and functions

 The variables and functions are brought together in a structure of variable and functions pointers

struct regt
{// regt
 unsigned char* status; //I2C reg 0 status flags F1
 unsigned char* net_idH; //I2C reg 1 House code or network id
 unsigned char* net_idL; //I2C reg 2
 unsigned char* device_idH; //I2C reg 3 device id
 unsigned char* device_idL; //I2C reg 4 device id
 unsigned char* alarmgr; //I2C reg 5 alarm ne control group
 unsigned char* gatewaynr; //I2C reg 6 gateway number of th associated gateway
 unsigned char* dest_idH; //I2C reg 7 destination id, origin of a received frame
 unsigned char* dest_idL; //I2C reg 8
 unsigned char* batlimit; //I2C reg 9 minimum power supply level fot the NTM in decivolts
 unsigned char* power; //I2C reg 10 transmission power
 unsigned char* mt; //I2C reg 11 status report period in 10 s intervals
 unsigned char* i2c_adres; //I2C reg 12 I2C address of a connected I2C device
 unsigned char* i2c_width; //I2C reg 13 I2C register with (1 or 2 bytes)
 unsigned char* status2; //I2C reg 14 status flags F2
 unsigned char* par1; //I2C reg 16 applcations registers
 unsigned char* par2; //I2C reg 17
 unsigned char* par3; //I2C reg 18
 unsigned char* par4; //I2C reg 19
 unsigned char* par5; //I2C reg 20
 unsigned char* par6; //I2C reg 21
 unsigned char* par7; //I2C reg 22
 unsigned char* ts1; //I2C reg 23 time stamp registers for received frame
 unsigned char* ts2; //I2C reg 24
 unsigned char* ts3; //I2C reg 25
 unsigned char* ts4; //I2C reg 26
 unsigned char* dtdt; //I2C reg 27 temperature rise or fall limit
 unsigned char* tempmax; //I2C reg 28 maximum temperature limit
 unsigned char* vl; //I2C reg 29 validity received frame indicator
 unsigned char* lq; //I2C reg 30 link quality received frame
 unsigned char* ed; //I2C reg 31 Energy density above threshold received frame
 unsigned char* tx_payload; //Transmit payload buffer

unsigned char* rx_payload; //Received payload buffer
 unsigned char* rx_length; //Length of received payload

unsigned char* report; //see table below
unsigned char* voltage;
unsigned char* temperature;
unsigned char* ana_in; //digital value of the analogue input
unsigned int* tick; // 1 ms tick counter
unsigned int* tick25; //2.5 s tick counter
unsigned char* apicom; //number application commands
 struct cmd* command_pntr; //pointer to structure with application commands
 struct api* service; //service routine structure entry point
/* Function pointers */

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 5 of 9

Adding third party software to the NTM

void (*tmr16_1) (void);
unsigned int* (*SetTimer) (unsigned int val);
char (*load_task) (unsigned char* name_string,

API_pointer function,
unsigned char priority);

void (*i2c_init) (void); //startup I2C
void (*spi_init) (void); //startup SPI2
char (*i2c_access) (unsigned char direction,

 struct I2C,
 unsigned short address,
 unsigned char* array,

 unsigned short length); //I2C communication routine
void (*whileNot) (unsigned char variable_type,

 void * variable,
 unsigned int value);

char (*send) (unsigned char buf_length);
char (*sendto) (unsigned short dest_address, unsigned char buf_length);
char (*remote) (unsigned short dest_address, unsigned char buf_length);
char (*groupcom) (unsigned short control_group,

 unsigned short dest_address,
 unsigned char buf_length);

 };

The Ninthway High Secure Radio Network uses two frame types for data transfer: Data frames and
Mac frames.

 Data frames contain data to be sent from application to application

 Mac frames contain commands for controlling the transceiver or the application

The frames have a standard header followed by the frame payload.
The frame payload is divided into a 4 byte mac header and maximum 100 bytes of payload.
The mac header differs for data frames and mac frames.

Payload header Data header Mac header

report Alarms flag registers Mac command

voltage Supply voltage in dV Group/control number

temperature Optional temperature in ˚C Destination address LB

ana_in Digital value analogue input Destination address HB

Examples for use

#define OWN_PNT_LOCATION 0x5460

Declaration of the variable and function pointer structure:

const struct regt* Own;

Own = OWN_PNT_LOCATION; connect the structure to the one built into the NTM firmware:

Example of using a system variable:

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 6 of 9

Adding third party software to the NTM

*Own->status = 2;
If(var < *Own->batlimit)…

Examples of using system functions

#define READ 1
#define WRITE 0

Own->spi_init(); //initiate SPI2. Data rate is 6 MHz.
Own->tmr16_1 = &private_ function; //add interrupt routine to timer16_1
Own->whileNot(1,&CharVar, 0); //wait while unsigned char CharVar ≠0;
Own->i2c_access(READ,PCA9551,0,Databuffer,10);

Read i2c_device PCA9551, starting from address 0 and put 10 bytes in array Databuffer.
PCA9551 is a structure of type:

struct I2C
 {
 unsigned char address; //I2C address (8 bit format)
 unsigned reg_type: 1; //bit 0, address = 1 byte, bit = 1, address = 2 bytes
 unsigned fast: 1; //1 fast I2C, 0 standard I2C
 };

const struct I2C PCA9551 = {0xC0,0, 0}

Provision of event handling routines

An application requires 4 routines to handle events. The pointer to the routines are combined into a structure.
The pointers to these routines are to be loaded during start-up. Your own application must fill the members of the structure
during initiation.

The pointer to the structure can be found as struct api* service in the system variable structure and requires a type
definition:

typedef void (*API_pointer)(void); function pointer with no parameters
struct api
 {
 API_pointer strt;
 API_pointer recv;
 API_pointer isp;
 API_pointer mac;
 };

The initiation routine should provide:

Own->service->strt = &Init_routine; //application initiation routine
Own->service->recv = &Radio_receive; //application handling of received data
Own->service->isp = &Int_service; //application handling of timer and input interrupt
Own->service->mac = &Mac_service; //application handling application control commands

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 7 of 9

Adding third party software to the NTM

Remember the Api structure is an object in RAM. Every time you start up the device this structure needs to be filled with
the pointer values of the event handlers, before the actual operation of the NTM starts. That is no problem for the Own-
>service->recv, Own->service->isp and Own->service->mac pointers, they are to be loaded during the application initiation
routine, but it is for the Own->service->strt routine.

There is no way of telling the operating system, between initiation of the NTM and initiation of the application, where the
application initiation routine can be found. It is therefore decided to place the application initiation routine at the beginning
of the application program sector 6.

The operating system expects to find the application routine at the start of sector 6 at address 0x6000h.

Init_routine = (API_pointer) 0x6000.

Using the NTM operating system

The NTM operating system is an event driven task scheduler. In the idle operation the device can be put to sleep.

Tasks are executed depending on their priority level (2 first, 0 last). There is no multitasking or time slicing. Each task has full
control over the device. So there will be no conflicts over use of peripherals causing extra wait states that consume
unnecessarily precious power.

However there is a down side. Tasks might not terminate due to the use of endless loops that do not meet their break
requirement.

Tasks have a time limit of 1.5 s. Tasks that take longer generate a time-out error message. The system maintains a
watchdog counter that will reset the device in the event the system locks up for more than 10 seconds. However this causes
loss of data, a very unwanted situation in a high secure system.

By using the WhileNot function in your application the operating system will, at time-out, fulfil the while break
requirement, causing the waiting execution to proceed and finish the task. In that case the time-out error will be issued
over the UART, but the task will not lock the device and no forced reset will take place.

A task is loaded with: Own->load_task (“task name”, task function pointer, priority).

A task can also be loaded using the Tmr16_1. The interrupt routine of this timer contains a function pointer (*Tmr16_1),
that can be used to periodically execute or execute after a certain delay, a private function.

The system uses the Timer32_0 as periodic loader for the service.isr function that regulates the broadcast of a status
message and private periodical functions. This timer runs under awake and sleeps conditions. Do not use it for private
purposes. Private purposes have access via the Own->service->isp pointer.

The SysTick of the ARM Cortex M0 feeds a 1 ms 32 bit counter Tick that is available through the system variable structure.
The SysTick stops during sleep. So during sleep the Tick variable is not incremented.

There is a second, 32 bit counter, Tick25 that is incremented every 2.5 seconds independent of sleep or wake state.

Controlled by the SysTick interrupt routine is a set of 6 down counters of size int. At setting of the timer it automatically
looks for a free timer and passes its address in the return value. The contents of this address can be checked whether it has
reached zero. If all timers are in use it will return a 0.

Timer = Own->SetTimer(1000) starts a timer that will count down 1 second. Its value is available thru dereferencing Timer.

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 8 of 9

Adding third party software to the NTM

Adding private commands to the NTM

You can enhance the flexibility of your application by adding commands that control the operation of your application. The
NTM contains a command parser that is accessible to third parties.

Similar to the setting of NTM parameters via the UART commands, application parameters can be controlled with own
application commands. Via the RMOT and CGRP commands applications can be controlled remotely.

A command consists of a 4 character mnemonic terminated either by a ‘=’ or a ‘?’.

The ‘?’ is meant to provide only an answer; the ‘=’ changes the parameter and returns an answer.

But any interpretation, after the location of the mnemonic and jump to the command subroutine, is entirely up to the
programmer.

 Commands are housed in a two member structure array like:

#define APICOM 2

struct cmd
 {
 unsigned char command[5];
 Function_pointer Function;
 };

Example:

const struct cmd Api_com[APICOM] =
{

 "TMMX",&Maxtemp,
 "DTdt",&Maxdt,
 …
 …
 };

For the parser to be able to find the extra commands, the application initiation routine must provide information by passing
the command structure address to a pointer and number of commands to a system variable:

**Own->Command_pntr = *Api_com; //contents of pointer pointed to by Command_pntr = apointer to command table
*Own->Apicom = APICOM; //number of commands

Function:

unsigned char* Maxtemp (struct bp *loadp);

A command function takes a pointer to a structure providing information about the buffer that contains the command
strings and returns a pointer to a string containing a result of the function.

struct bp
 {
 unsigned char *buffer; //pointer to the buffer that contains the command

APPLICATION NOTE 3

ADDING THIRD PARTY SOFTWARE TO NTM

© Ninthway CV – The Netherlands version 13-Dec-12
info@ninthway.eu www.ninthway.eu
 Page 9 of 9

Adding third party software to the NTM

 unsigned char *begin; //pointer that indicates start position in buffer for parsing
 unsigned char *end; //pointer that indicates last position of commands in buffer
 unsigned char *length; //pointer of last position of buffer
 };

This setup is laid out to be used with a revolving buffer. But in that case scanning through the buffer requires an increment
of *begin taking into account the crossover from *length (end if the buffer) to *buffer (begin of the buffer). The buffer is
empty when *begin = *end.

An alternative way to control parameters is to use the application registers I2C reg 16 – I2C reg 31 either by connecting the
NTM to an I2C master or provide I2C data in the payload and have an application program transfer the payload bytes to the
proper I2C registers.

Transmission and reception

For reception the device needs to be awake either by keeping it awake or using synchronised operation. Synced operation is
handled by the NTM software.

After the reception of a valid frame an interrupt is issued activating the Own->service->recv routine.
Data from the received frame are to be found in the proper I2Cregisters and the *Own->rx_payload
Buffer.
 The length of the buffer is given in *Own->rx_length.

For transmission the frame addressing is controlled via the I2C registers.
An application can load data into the payload using the Own->tx_payload entry point.
The length of the payload is provided via a parameter in the transmit function.

There are four standard types of transmission frames.

1. Send a data frame using source ID only.

Own->send(unsigned char buf_length).

2. Send data frame to a destination device, use its 12 bit address.

Own->sendto(unsigned short dest_address, unsigned char buf_length).

3. Send a mac (control) frame to the NTM proper (remote programming). Use its 12 bit address. The payload contains

a command string as specified in application note 2 and is terminated by a CR LF.

Own->remote (unsigned short dest_address, unsigned char buf_length).

4. Control a device remotely (actor steering) via a mac frame. The payload contains information for the application

software. Use a 12 bit destination address.

Own->groupcom(unsigned short group, unsigned short dest_address, unsigned char buf_length)

 All functions return a 1 if transmission is OK or else 0.

